Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
mBio ; 14(1): e0018823, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2223573

ABSTRACT

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Subject(s)
COVID-19 , Respiratory Tract Infections , Viruses , Humans , COVID-19/prevention & control , SARS-CoV-2 , Pandemics/prevention & control , Viruses/genetics
2.
J Virol ; 97(2): e0008923, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2223569

ABSTRACT

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Subject(s)
Research , Virology , Virus Diseases , Humans , COVID-19/prevention & control , Information Dissemination , Pandemics/prevention & control , Policy Making , Research/standards , Research/trends , SARS-CoV-2 , Virology/standards , Virology/trends , Virus Diseases/prevention & control , Virus Diseases/virology , Viruses
3.
mSphere ; 8(2): e0003423, 2023 04 20.
Article in English | MEDLINE | ID: covidwho-2213885

ABSTRACT

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Subject(s)
COVID-19 , Viruses , Humans , COVID-19/prevention & control , SARS-CoV-2 , Pandemics/prevention & control , Antiviral Agents
4.
STAR Protoc ; 3(4): 101872, 2022 12 16.
Article in English | MEDLINE | ID: covidwho-2096158

ABSTRACT

This protocol presents the use of SARS-CoV-2 isolates to infect human kidney organoids, enabling exploration of the impact of SARS-CoV-2 infection in a human multicellular in vitro system. We detail steps to generate kidney organoids from human pluripotent stem cells (hPSCs) and emulate a diabetic milieu via organoids exposure to diabetogenic-like cell culture conditions. We further describe preparation and titration steps of SARS-CoV-2 virus stocks, their subsequent use to infect the kidney organoids, and assessment of the infection via immunofluorescence. For complete details on the use and execution of this protocol, please refer to Garreta et al. (2022).1.


Subject(s)
COVID-19 , Pluripotent Stem Cells , Humans , SARS-CoV-2 , Cell Differentiation , Kidney , Organoids
5.
Cell Death Dis ; 13(8): 684, 2022 Aug 06.
Article in English | MEDLINE | ID: covidwho-1977989

ABSTRACT

Pattern recognition receptors (PRRs) and interferons (IFNs) serve as essential antiviral defense against SARS-CoV-2, the causative agent of the COVID-19 pandemic. Type III IFNs (IFN-λ) exhibit cell-type specific and long-lasting functions in auto-inflammation, tumorigenesis, and antiviral defense. Here, we identify the deubiquitinating enzyme USP22 as central regulator of basal IFN-λ secretion and SARS-CoV-2 infections in human intestinal epithelial cells (hIECs). USP22-deficient hIECs strongly upregulate genes involved in IFN signaling and viral defense, including numerous IFN-stimulated genes (ISGs), with increased secretion of IFN-λ and enhanced STAT1 signaling, even in the absence of exogenous IFNs or viral infection. Interestingly, USP22 controls basal and 2'3'-cGAMP-induced STING activation and loss of STING reversed STAT activation and ISG and IFN-λ expression. Intriguingly, USP22-deficient hIECs are protected against SARS-CoV-2 infection, viral replication, and the formation of de novo infectious particles, in a STING-dependent manner. These findings reveal USP22 as central host regulator of STING and type III IFN signaling, with important implications for SARS-CoV-2 infection and antiviral defense.


Subject(s)
COVID-19 , Interferon Type I , Membrane Proteins/metabolism , Ubiquitin Thiolesterase , Antiviral Agents/pharmacology , Humans , Interferon Type I/genetics , Interferons/metabolism , Pandemics , SARS-CoV-2 , Ubiquitin Thiolesterase/metabolism , Interferon Lambda
6.
Commun Biol ; 5(1): 714, 2022 07 19.
Article in English | MEDLINE | ID: covidwho-1947510

ABSTRACT

SARS-CoV-2 hijacks the host cell transcriptional machinery to induce a phenotypic state amenable to its replication. Here we show that analysis of Master Regulator proteins representing mechanistic determinants of the gene expression signature induced by SARS-CoV-2 in infected cells revealed coordinated inactivation of Master Regulators enriched in physical interactions with SARS-CoV-2 proteins, suggesting their mechanistic role in maintaining a host cell state refractory to virus replication. To test their functional relevance, we measured SARS-CoV-2 replication in epithelial cells treated with drugs predicted to activate the entire repertoire of repressed Master Regulators, based on their experimentally elucidated, context-specific mechanism of action. Overall, 15 of the 18 drugs predicted to be effective by this methodology induced significant reduction of SARS-CoV-2 replication, without affecting cell viability. This model for host-directed pharmacological therapy is fully generalizable and can be deployed to identify drugs targeting host cell-based Master Regulator signatures induced by virtually any pathogen.


Subject(s)
COVID-19 Drug Treatment , Virus Diseases , Humans , SARS-CoV-2 , Transcriptome , Virus Replication
7.
Cell Metab ; 34(6): 857-873.e9, 2022 06 07.
Article in English | MEDLINE | ID: covidwho-1926324

ABSTRACT

It is not well understood why diabetic individuals are more prone to develop severe COVID-19. To this, we here established a human kidney organoid model promoting early hallmarks of diabetic kidney disease development. Upon SARS-CoV-2 infection, diabetic-like kidney organoids exhibited higher viral loads compared with their control counterparts. Genetic deletion of the angiotensin-converting enzyme 2 (ACE2) in kidney organoids under control or diabetic-like conditions prevented viral detection. Moreover, cells isolated from kidney biopsies from diabetic patients exhibited altered mitochondrial respiration and enhanced glycolysis, resulting in higher SARS-CoV-2 infections compared with non-diabetic cells. Conversely, the exposure of patient cells to dichloroacetate (DCA), an inhibitor of aerobic glycolysis, resulted in reduced SARS-CoV-2 infections. Our results provide insights into the identification of diabetic-induced metabolic programming in the kidney as a critical event increasing SARS-CoV-2 infection susceptibility, opening the door to the identification of new interventions in COVID-19 pathogenesis targeting energy metabolism.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , Diabetes Mellitus , Diabetic Nephropathies , Humans , Kidney/metabolism , Organoids , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2
9.
NPJ Syst Biol Appl ; 8(1): 15, 2022 05 02.
Article in English | MEDLINE | ID: covidwho-1890186

ABSTRACT

Increasing evidence points towards the key role of the epithelium in the systemic and over-activated immune response to viral infection, including SARS-CoV-2 infection. Yet, how viral infection alters epithelial-immune cell interactions regulating inflammatory responses, is not well known. Available experimental approaches are insufficient to properly analyse this complex system, and computational predictions and targeted data integration are needed as an alternative approach. In this work, we propose an integrated computational biology framework that models how infection alters intracellular signalling of epithelial cells and how this change impacts the systemic immune response through modified interactions between epithelial cells and local immune cell populations. As a proof-of-concept, we focused on the role of intestinal and upper-airway epithelial infection. To characterise the modified epithelial-immune interactome, we integrated intra- and intercellular networks with single-cell RNA-seq data from SARS-CoV-2 infected human ileal and colonic organoids as well as from infected airway ciliated epithelial cells. This integrated methodology has proven useful to point out specific epithelial-immune interactions driving inflammation during disease response, and propose relevant molecular targets to guide focused experimental analysis.


Subject(s)
COVID-19 , Virus Diseases , Epithelial Cells , Humans , SARS-CoV-2 , Signal Transduction
10.
Nat Commun ; 13(1): 2564, 2022 05 10.
Article in English | MEDLINE | ID: covidwho-1830056

ABSTRACT

The recent emergence of highly transmissible SARS-CoV-2 variants illustrates the urgent need to better understand the molecular details of the virus binding to its host cell and to develop anti-viral strategies. While many studies focused on the role of the angiotensin-converting enzyme 2 receptor in the infection, others suggest the important role of cell attachment factors such as glycans. Here, we use atomic force microscopy to study these early binding events with the focus on the role of sialic acids (SA). We show that SARS-CoV-2 binds specifically to 9-O-acetylated-SA with a moderate affinity, supporting its role as an attachment factor during virus landing to cell host surfaces. For therapeutic purposes and based on this finding, we have designed novel blocking molecules with various topologies and carrying a controlled number of SA residues, enhancing affinity through a multivalent effect. Inhibition assays show that the AcSA-derived glycoclusters are potent inhibitors of cell binding and infectivity, offering new perspectives in the treatment of SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Binding Sites , Humans , N-Acetylneuraminic Acid , Protein Binding , Sialic Acids/metabolism , Spike Glycoprotein, Coronavirus/metabolism
11.
J Virol ; 96(7): e0170521, 2022 04 13.
Article in English | MEDLINE | ID: covidwho-1736024

ABSTRACT

The coronavirus SARS-CoV-2 caused the COVID-19 global pandemic leading to 5.3 million deaths worldwide as of December 2021. The human intestine was found to be a major viral target which could have a strong impact on virus spread and pathogenesis since it is one of the largest organs. While type I interferons (IFNs) are key cytokines acting against systemic virus spread, in the human intestine type III IFNs play a major role by restricting virus infection and dissemination without disturbing homeostasis. Recent studies showed that both type I and III IFNs can inhibit SARS-CoV-2 infection, but it is not clear whether one IFN controls SARS-CoV-2 infection of the human intestine better or with a faster kinetics. In this study, we could show that type I and III IFNs both possess antiviral activity against SARS-CoV-2 in human intestinal epithelial cells (hIECs); however, type III IFN is more potent. Shorter type III IFN pretreatment times and lower concentrations were required to efficiently reduce virus load compared to type I IFNs. Moreover, type III IFNs significantly inhibited SARS-CoV-2 even 4 h postinfection and induced a long-lasting antiviral effect in hIECs. Importantly, the sensitivity of SARS-CoV-2 to type III IFNs was virus specific since type III IFN did not control VSV infection as efficiently. Together, these results suggest that type III IFNs have a higher potential for IFN-based treatment of SARS-CoV-2 intestinal infection compared to type I IFNs. IMPORTANCE SARS-CoV-2 infection is not restricted to the respiratory tract and a large number of COVID-19 patients experience gastrointestinal distress. Interferons are key molecules produced by the cell to combat virus infection. Here, we evaluated how two types of interferons (type I and III) can combat SARS-CoV-2 infection of human gut cells. We found that type III interferons were crucial to control SARS-CoV-2 infection when added both before and after infection. Importantly, type III interferons were also able to produce a long-lasting effect, as cells were protected from SARS-CoV-2 infection up to 72 h posttreatment. This study suggested an alternative treatment possibility for SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , Interferon Type I , Interferons , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cells, Cultured , Epithelial Cells , Humans , Interferon Type I/pharmacology , Interferons/pharmacology , SARS-CoV-2/drug effects , Interferon Lambda
12.
mBio ; 13(2): e0370521, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1714363

ABSTRACT

Combinations of direct-acting antivirals are needed to minimize drug resistance mutations and stably suppress replication of RNA viruses. Currently, there are limited therapeutic options against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and testing of a number of drug regimens has led to conflicting results. Here, we show that cobicistat, which is an FDA-approved drug booster that blocks the activity of the drug-metabolizing proteins cytochrome P450-3As (CYP3As) and P-glycoprotein (P-gp), inhibits SARS-CoV-2 replication. Two independent cell-to-cell membrane fusion assays showed that the antiviral effect of cobicistat is exerted through inhibition of spike protein-mediated membrane fusion. In line with this, incubation with low-micromolar concentrations of cobicistat decreased viral replication in three different cell lines including cells of lung and gut origin. When cobicistat was used in combination with remdesivir, a synergistic effect on the inhibition of viral replication was observed in cell lines and in a primary human colon organoid. This was consistent with the effects of cobicistat on two of its known targets, CYP3A4 and P-gp, the silencing of which boosted the in vitro antiviral activity of remdesivir in a cobicistat-like manner. When administered in vivo to Syrian hamsters at a high dose, cobicistat decreased viral load and mitigated clinical progression. These data highlight cobicistat as a therapeutic candidate for treating SARS-CoV-2 infection and as a potential building block of combination therapies for COVID-19. IMPORTANCE The lack of effective antiviral treatments against SARS-CoV-2 is a significant limitation in the fight against the COVID-19 pandemic. Single-drug regimens have so far yielded limited results, indicating that combinations of antivirals might be required, as previously seen for other RNA viruses. Our work introduces the drug booster cobicistat, which is approved by the FDA and typically used to potentiate the effect of anti-HIV protease inhibitors, as a candidate inhibitor of SARS-CoV-2 replication. Beyond its direct activity as an antiviral, we show that cobicistat can enhance the effect of remdesivir, which was one of the first drugs proposed for treatment of SARS-CoV-2. Overall, the dual action of cobicistat as a direct antiviral and a drug booster can provide a new approach to design combination therapies and rescue the activity of compounds that are only partially effective in monotherapy.


Subject(s)
COVID-19 Drug Treatment , Hepatitis C, Chronic , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cobicistat , Cricetinae , Disease Progression , Humans , Mesocricetus , Pandemics , SARS-CoV-2 , Viral Load
13.
Mol Ther ; 30(5): 2005-2023, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1621101

ABSTRACT

Despite rapid development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant modalities to curb the pandemic by directly attacking the virus on a genetic level remain highly desirable and are urgently needed. Here we comprehensively illustrate the capacity of adeno-associated virus (AAV) vectors co-expressing a cocktail of three short hairpin RNAs (shRNAs; RNAi triggers) directed against the SARS-CoV-2 RdRp and N genes as versatile and effective antiviral agents. In cultured monkey cells and human gut organoids, our most potent vector, SAVIOR (SARS virus repressor), suppressed SARS-CoV-2 infection to background levels. Strikingly, in control experiments using single shRNAs, multiple SARS-CoV-2 escape mutants quickly emerged from infected cells within 24-48 h. Importantly, such adverse viral adaptation was fully prevented with the triple-shRNA AAV vector even during long-term cultivation. In addition, AAV-SAVIOR efficiently purged SARS-CoV-2 in a new model of chronically infected human intestinal cells. Finally, intranasal AAV-SAVIOR delivery using an AAV9 capsid moderately diminished viral loads and/or alleviated disease symptoms in hACE2-transgenic or wild-type mice infected with human or mouse SARS-CoV-2 strains, respectively. Our combinatorial and customizable AAV/RNAi vector complements ongoing global efforts to control the coronavirus disease 2019 (COVID-19) pandemic and holds great potential for clinical translation as an original and flexible preventive or therapeutic antiviral measure.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antiviral Agents , COVID-19/prevention & control , Dependovirus , Mice , Pandemics , RNA Interference , RNA, Small Interfering/genetics , SARS-CoV-2/genetics
14.
Cell Host Microbe ; 28(6): 853-866.e5, 2020 12 09.
Article in English | MEDLINE | ID: covidwho-1385263

ABSTRACT

Pathogenesis induced by SARS-CoV-2 is thought to result from both an inflammation-dominated cytokine response and virus-induced cell perturbation causing cell death. Here, we employ an integrative imaging analysis to determine morphological organelle alterations induced in SARS-CoV-2-infected human lung epithelial cells. We report 3D electron microscopy reconstructions of whole cells and subcellular compartments, revealing extensive fragmentation of the Golgi apparatus, alteration of the mitochondrial network and recruitment of peroxisomes to viral replication organelles formed by clusters of double-membrane vesicles (DMVs). These are tethered to the endoplasmic reticulum, providing insights into DMV biogenesis and spatial coordination of SARS-CoV-2 replication. Live cell imaging combined with an infection sensor reveals profound remodeling of cytoskeleton elements. Pharmacological inhibition of their dynamics suppresses SARS-CoV-2 replication. We thus report insights into virus-induced cytopathic effects and provide alongside a comprehensive publicly available repository of 3D datasets of SARS-CoV-2-infected cells for download and smooth online visualization.


Subject(s)
COVID-19/genetics , Endoplasmic Reticulum/ultrastructure , SARS-CoV-2/ultrastructure , Viral Replication Compartments/ultrastructure , COVID-19/diagnostic imaging , COVID-19/pathology , COVID-19/virology , Cell Death/genetics , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/virology , Humans , Microscopy, Electron , Pandemics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Viral Replication Compartments/metabolism , Virus Replication/genetics
15.
Cell Mol Life Sci ; 78(16): 5953-5976, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1293344

ABSTRACT

SARS-CoV-2 is the virus causing the major pandemic facing the world today. Although, SARS-CoV-2 primarily causes lung infection, a variety of symptoms have proven a systemic impact on the body. SARS-CoV-2 has spread in the community quickly infecting humans from all age, ethnicities and gender. However, fatal outcomes have been linked to specific host factors and co-morbidities such as age, hypertension, immuno-deficiencies, chronic lung diseases or metabolic disorders. A major shift in the microbiome of patients suffering of the coronavirus disease 2019 (COVID-19) have also been observed and is linked to a worst outcome of the disease. As many co-morbidities are already known to be associated with a dysbiosis of the microbiome such as hypertension, diabetes and metabolic disorders. Host factors and microbiome changes are believed to be involved as a network in the acquisition of the infection and the development of the diseases. We will review in detail in this manuscript, the immune response toward SARS-CoV-2 infection as well as the host factors involved in the facilitation and worsening of the infection. We will also address the impact of COVID-19 on the host's microbiome and secondary infection which also worsen the disease.


Subject(s)
COVID-19/immunology , COVID-19/virology , Lung/immunology , Lung/virology , SARS-CoV-2/immunology , Virus Replication/immunology , Animals , Dysbiosis/immunology , Dysbiosis/virology , Humans , Immunity/immunology , Microbiota/immunology , Pandemics
16.
PLoS Pathog ; 17(6): e1009687, 2021 06.
Article in English | MEDLINE | ID: covidwho-1285204

ABSTRACT

COVID-19 outbreak is the biggest threat to human health in recent history. Currently, there are over 1.5 million related deaths and 75 million people infected around the world (as of 22/12/2020). The identification of virulence factors which determine disease susceptibility and severity in different cell types remains an essential challenge. The serine protease TMPRSS2 has been shown to be important for S protein priming and viral entry, however, little is known about its regulation. SPINT2 is a member of the family of Kunitz type serine protease inhibitors and has been shown to inhibit TMPRSS2. Here, we explored the existence of a co-regulation between SPINT2/TMPRSS2 and found a tightly regulated protease/inhibitor expression balance across tissues. We found that SPINT2 negatively correlates with SARS-CoV-2 expression in Calu-3 and Caco-2 cell lines and was down-regulated in secretory cells from COVID-19 patients. We validated our findings using Calu-3 cell lines and observed a strong increase in viral load after SPINT2 knockdown, while overexpression lead to a drastic reduction of the viral load. Additionally, we evaluated the expression of SPINT2 in datasets from comorbid diseases using bulk and scRNA-seq data. We observed its down-regulation in colon, kidney and liver tumors as well as in alpha pancreatic islets cells from diabetes Type 2 patients, which could have implications for the observed comorbidities in COVID-19 patients suffering from chronic diseases.


Subject(s)
COVID-19/metabolism , Membrane Glycoproteins/metabolism , SARS-CoV-2/metabolism , Virus Internalization , A549 Cells , COVID-19/genetics , Caco-2 Cells , Humans , Membrane Glycoproteins/genetics , SARS-CoV-2/genetics , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Severity of Illness Index
17.
EMBO J ; 40(16): e107821, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1280957

ABSTRACT

SARS-CoV-2 is a newly emerged coronavirus that caused the global COVID-19 outbreak in early 2020. COVID-19 is primarily associated with lung injury, but many other clinical symptoms such as loss of smell and taste demonstrated broad tissue tropism of the virus. Early SARS-CoV-2-host cell interactions and entry mechanisms remain poorly understood. Investigating SARS-CoV-2 infection in tissue culture, we found that the protease TMPRSS2 determines the entry pathway used by the virus. In the presence of TMPRSS2, the proteolytic process of SARS-CoV-2 was completed at the plasma membrane, and the virus rapidly entered the cells within 10 min in a pH-independent manner. When target cells lacked TMPRSS2 expression, the virus was endocytosed and sorted into endolysosomes, from which SARS-CoV-2 entered the cytosol via acid-activated cathepsin L protease 40-60 min post-infection. Overexpression of TMPRSS2 in non-TMPRSS2 expressing cells abolished the dependence of infection on the cathepsin L pathway and restored sensitivity to the TMPRSS2 inhibitors. Together, our results indicate that SARS-CoV-2 infects cells through distinct, mutually exclusive entry routes and highlight the importance of TMPRSS2 for SARS-CoV-2 sorting into either pathway.


Subject(s)
COVID-19/metabolism , Cathepsin L/metabolism , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Animals , COVID-19/genetics , Caco-2 Cells , Chlorocebus aethiops , Endocytosis , Host Microbial Interactions , Humans , Hydrogen-Ion Concentration , Proteolysis , Serine Endopeptidases/genetics , Signal Transduction , Vero Cells , Virus Internalization
18.
Mol Syst Biol ; 17(4): e10232, 2021 04.
Article in English | MEDLINE | ID: covidwho-1204403

ABSTRACT

Exacerbated pro-inflammatory immune response contributes to COVID-19 pathology. However, despite the mounting evidence about SARS-CoV-2 infecting the human gut, little is known about the antiviral programs triggered in this organ. To address this gap, we performed single-cell transcriptomics of SARS-CoV-2-infected intestinal organoids. We identified a subpopulation of enterocytes as the prime target of SARS-CoV-2 and, interestingly, found the lack of positive correlation between susceptibility to infection and the expression of ACE2. Infected cells activated strong pro-inflammatory programs and produced interferon, while expression of interferon-stimulated genes was limited to bystander cells due to SARS-CoV-2 suppressing the autocrine action of interferon. These findings reveal that SARS-CoV-2 curtails the immune response and highlights the gut as a pro-inflammatory reservoir that should be considered to fully understand SARS-CoV-2 pathogenesis.


Subject(s)
Intestines/immunology , SARS-CoV-2/physiology , Single-Cell Analysis , COVID-19/virology , Gastrointestinal Microbiome , Humans , In Situ Hybridization, Fluorescence , Organoids/metabolism , Sequence Analysis, RNA
19.
Mol Syst Biol ; 17(2): e10188, 2021 02.
Article in English | MEDLINE | ID: covidwho-1084993

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global threat to human health and has compromised economic stability. In addition to the development of an effective vaccine, it is imperative to understand how SARS-CoV-2 hijacks host cellular machineries on a system-wide scale so that potential host-directed therapies can be developed. In situ proteome-wide abundance and thermal stability measurements using thermal proteome profiling (TPP) can inform on global changes in protein activity. Here we adapted TPP to high biosafety conditions amenable to SARS-CoV-2 handling. We discovered pronounced temporal alterations in host protein thermostability during infection, which converged on cellular processes including cell cycle, microtubule and RNA splicing regulation. Pharmacological inhibition of host proteins displaying altered thermal stability or abundance during infection suppressed SARS-CoV-2 replication. Overall, this work serves as a framework for expanding TPP workflows to globally important human pathogens that require high biosafety containment and provides deeper resolution into the molecular changes induced by SARS-CoV-2 infection.


Subject(s)
COVID-19/metabolism , Host-Pathogen Interactions , Protein Stability , SARS-CoV-2/physiology , Viral Proteins/metabolism , Antiviral Agents/pharmacology , COVID-19/virology , Humans , Proteome , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Temperature , Virus Replication/drug effects
20.
Cells ; 9(9):2085, 2020.
Article | MDPI | ID: covidwho-770468

ABSTRACT

Feline coronaviruses (FCoVs) infect both wild and domestic cat populations world-wide. FCoVs present as two main biotypes: the mild feline enteric coronavirus (FECV) and the fatal feline infectious peritonitis virus (FIPV). FIPV develops through mutations from FECV during a persistence infection. So far, the molecular mechanism of FECV-persistence and contributing factors for FIPV development may not be studied, since field FECV isolates do not grow in available cell culture models. In this work, we aimed at establishing feline ileum and colon organoids that allow the propagation of field FECVs. We have determined the best methods to isolate, culture and passage feline ileum and colon organoids. Importantly, we have demonstrated using GFP-expressing recombinant field FECV that colon organoids are able to support infection of FECV, which were unable to infect traditional feline cell culture models. These organoids in combination with recombinant FECVs can now open the door to unravel the molecular mechanisms by which FECV can persist in the gut for a longer period of time and how transition to FIPV is achieved.

SELECTION OF CITATIONS
SEARCH DETAIL